

Predicting Relative-Permeability Curves Directly From Rock Images

Dmitriy Silin¹ and Tad W. Patzek²

Lawrence Berkeley National Laboratory
 University of Texas, Austin

2009 APE ATCE 6 October New Orleans, LA

Darcy's law extension for 2-phase flow

"...the obvious futility of attempting to solve these [Navier-Stokes] equations for multiply connected passages composed of the pores of a porous medium has necessitated a direct empirical solution of the problem."

M.Muskat and M.Meres *The flow of heterogeneous fluids through porous media* Physics, 1936

Pore-network model

"The use of high speed computers, such as Illiac, will make possible tests of network model that I could not even consider..."

I.Fatt, *The network model of porous media* Transactions AIME 1951

Fig. 1—Single Hexagonal Network. Fig. 2—Square Network.

Fig. 3—Double Hexagonal Network.

Fig. 4—Triple Hexagonal Network.

New opportunities

- 3D reconstruction of the pore space
- X-ray computer tomography (CT): micron-scale resolution
- Focused-ion-beam (FIB): nanometer scale
- Computing power

Micro CT and SEM: Liviu Tomutsa, LBNL

Outline

- Maximal Inscribed Spheres method
 - Capillary equilibrium
 - Verification
- Solving flow equations
 - The method of artificial compressibility
 - The curse of dimensionality: domain partitioning
- Relative permeability curves

Maximal inscribed spheres: fluid distribution

Maximal inscribed spheres: fluid distribution

Maximal inscribed spheres: fluid distribution

Maximal inscribed spheres

- Assumptions
 - Capillary equilibrium
 - Disperse saturation is negligible
- Implementation
 - Input: 3d binary image of the pore space
 - 3D maximal radii table
 - Connectivity: cluster search
 - Large input data sets

Maximal inscribed spheres: verification

CT image **MIS Calculations**

The method of artificial compressibility

A.Chorin: Journal of Computational Physics 1967

Computational parameters:
iteration parameter
artificial density
artificial compressibility

Example: Stokes flow

- Convergence is critically important for estimation of Darcy velocity
- A severe criterion must be imposed

"The Curse of Dimensionality"

Good news:

 High-resolution images → accurate discretization

Bad news:

- 5mm×5mm×5mm at 5 micron resolution = 1GB
- Millions of grid cells → enormous volume of computations

Slicing the whole sample into layers

Evaluation of relative permeability curves

Wetting fluid

Non-wetting fluid

MIS-calculated fluid distribution

Relative permeability evalculation

Fig. 9. Composite curves showing permeability-saturation data for all four sands.

Summary and conclusions MIS-calculations + FD simulations:

Benefits:

- Partitioning of a large sample → distributed computations
- Analysis of the digital image bypassing pore network extraction
- Large high-resolution images can be processed on a desktop computer

Weaknesses

- Severe criterion for convergence
- "The curse of dimensionality"
- A promising approach for routine applications

Generalizations

 Modeling of the impact of mechanical deformation, mineralization, etc

Acknowledgments

- This work has been performed at Lawrence Berkeley National Laboratory of the U.S. Department of Energy operated by the University of California under Contract No. DE-AC03-76SF00098, and the University of California at Berkeley
- The first author was partially supported by the UC Oil Consortium
- New development: petrophysical studies of unconventional resources supported by the Research Partnership to Secure Energy for America